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Abstract
Intrinsic localized modes in the gap of a diatomic chain with free ends are
discussed in detail by going beyond the rotating wave approximation. We
include in the time dependence of the displacements terms up to cos(2ωt).
We consider a finite chain of particles interacting with nearest-neighbour
interactions. We study amplitudes of the intrinsic localized modes smaller than
0.25 Å. In this range of amplitudes the full potential can be well represented by
an expansion in powers of the displacements up to fourth-order terms. The use
of a force constant model allows us to simplify the problem. As a test case we
consider a chain of LiI atoms. We found intrinsic localized modes in the gap.
The amplitudes of the first harmonic term (cos(ωt)) are of even or odd parity,
whereas we prove that the amplitudes of the static part and those of the second
harmonic can have only even symmetry. The main result of the paper is that
the amplitudes associated with the second harmonic are two or three orders of
magnitude less than those of the first harmonic. Furthermore, the frequency of
the localized modes are modified by less than 1% by the inclusion of the second
harmonic.

1. Introduction

The existence of highly localized modes in anharmonic crystals is by now well established [1,5].
These modes have been termed intrinsic localized modes (ILMs), reflecting the fact that no
external defects are needed for their creation. The first studies [1, 3] showed the existence
of ILMs above the top of the harmonic phonon branch for monoatomic one-dimensional
lattices with harmonic and quartic anharmonic interactions. In a diatomic chain with realistic
potentials, however, Kiselev et al [4] showed that ILMs arise in the gap between the
acoustic and the optical branches. The above treatments are based on the rotating wave
approximation (RWA) in which the atomic displacements contain a static part and a vibrational
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part proportional to cos(ωt), where ω is the frequency of the stationary localized mode.
Molecular dynamics (MD) simulations [6] verify that those modes do not depend on the
dimensionality and are also present in diatomic 3D crystals. In these MD simulations a
Fourier extension of the RWA was made by introducing a part of the vibrational displacement
proportional to cos(2ωt). However, the contributions to the displacements pattern associated
with the second harmonic were not analysed. Recently ILMs have been observed [7] in
crystalline arrays of charged linear chains of PtCl with resonant Raman scattering. ILM
have been observed also in different systems, such as waveguide arrays [8], spin waves in an
antiferromagnet [9] and small Josephson junction ladders [10]. In this work we consider a
diatomic chain with two alternating masses to represent a one-dimensional LiI crystal. The
study of one-dimensional systems provides a simple interpretative scheme to understand the
more complex results of the 3D MD simulations. We present a detailed study of the equations
of motion going beyond the RWA, including the second harmonic to prove numerically the
common understanding that the RWA is an approximation which is of practical use if higher
harmonics contributions are small. Even if there are general theorems stating the existence of
the ILMs [11–13] for on-site potentials and for potential energy functions strictly convex, i.e.
with even anharmonic terms only, we need numerical calculations, because of the form of our
potential which also contains odd anharmonic terms and because, even more importantly, the
general theorems do not provide a numerical evaluation of the displacements pattern [14]. In a
previous paper [15] we have shown that the full potential containing a Born–Mayer repulsive
term and an attractive Coulombic part gives ILMs which are qualitatively the same as those
derived from a force constant model which includes harmonic as well as cubic and quartic
anharmonic interactions derived by a Taylor expansion of the full potential. The results of the
two approaches essentially coincide for amplitudes of the ILMs on the order of 0.25 Å or less.
Since these amplitudes are in the range accessible to experiments, we simplify the analysis by
using the force constant method. We examine ILM modes in a diatomic chain with free ends
and like atoms at the ends. We obtain ILM modes of odd or even parity. As a specific case we
investigate LiI which has a large gap because of the large difference in mass of the Li and I
atoms. In section 2 we first introduce the two-body potential. Then we discuss the equations
of motion beyond the RWA. In section 3 we discuss the results for the ILM modes. We draw
the conclusions in section 4.

2. Theoretical development

We consider a diatomic chain of particles interacting via nearest-neighbour forces. The
equations of motion of the particles are

mnün = V ′
n+1(un+1 − un) − V ′

n(un − un−1) (1)

where un is the displacement of the nth particle and Vn(un+1 − un) is the interaction potential
of neighbouring atoms. We use a potential formed by a repulsive Born–Mayer part and an
attractive Coulomb part, which is appropriate for alkali halide crystals. The parameters are
fitted to bulk properties of LiI [16]. In the following we will focus on displacements with
maximum amplitude of 0.05–0.25 Å. As we have shown in a previous paper [15] this restriction
allows us to expand the potential in a power series of the displacements up to fourth order. The
equations of motion then become

mnün = K2(un+1 + un−1 − 2un) + K3[(un+1 − un)
2 − (un−1 − un)

2]

+K4[(un+1 − un)
3 + (un−1 − un)

3] (2)

where K2, K3, K4 are the harmonic, cubic and quartic force constants derived from the total
potential V . We remind that in the RWA equation (2) represents a chain of atoms which
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are anharmonic oscillators with respect to the space coordinates, while they are harmonic
oscillators of frequency ω with respect to the time coordinate. To go beyond the RWA we
include the next term, i.e. the second harmonic 2ω. The displacement for the nth particle for
stationary modes is then of the form

un = A(φn + ξn cos (ωt) + χn cos (2ωt)) (3)

where A is the maximum amplitude of the mode. The relative vibrational amplitudes ξn and
χn and the static displacement φn are independent of time. Substituting equation (3) into (2)
we get

mnω
2ξn + mn4ω2χn = K2

{
(φn − φn−1) + (φn − φn+1) + [(ξn − ξn−1)

+(ξn − ξn+1)] cos (ωt) + [(χn − χn−1) + (χn − χn+1)] cos (2ωt)
}

+AK3
[
(φn+1 − φn) + (ξn+1 − ξn) cos (ωt) + (χn+1 − χn) cos (2ωt)

]2

−AK3
[
(φn−1 − φn) + (ξn−1 − ξn) cos (ωt) + (χn−1 − χn) cos (2ωt)

]2

+A2K4
[
(φn+1 − φn) + (ξn+1 − ξn) cos (ωt) + (χn+1 − χn) cos (2ωt)

]3

+A2K4
[
(φn−1 − φn) + (ξn−1 − ξn) cos (ωt) + (χn−1 − χn) cos (2ωt)

]3
. (4)

To be consistent with the displacement expansion up to the second harmonic of equation (3)
we consider in equation (4) only all the contributions pertinent to our ansatz: i.e. we replace
the terms in cos3(nωt) by 3/4 cos(nωt) for n = 1 and 2, the terms in cos2(ωt) cos(2ωt) by
(1 + 2 cos(2ωt))/4 etc. In this way we get the constant term as well as the term linear in
cos(ωt) and cos(2ωt). Equating in equation (4) the coefficients of the cos(ωt) terms we get

K2
[
(ξn − ξn−1) + (ξn − ξn+1)

]
+ AK3

[
2(φn − φn−1)(ξn − ξn−1) + (χn − χn−1)(ξn − ξn−1)

−2(φn − φn+1)(ξn − ξn+1) − (χn − χn+1)(ξn − ξn+1)
]

+ 3
4A2K4

[
(ξn − ξn−1)

3 + (ξn − ξn+1)
3 + 4(φn − φn−1)

2(ξn − ξn−1)

+4(χn − χn−1)(φn − φn−1)(ξn − ξn−1) + 2(χn − χn−1)
2(ξn − ξn−1)

+4(φn − φn+1)
2(ξn − ξn+1) + 4(χn − χn+1)(φn − φn+1)(ξn − ξn+1)

+2(χn − χn+1)
2(ξn − ξn+1)

] = mnω
2ξn. (5)

Equating the coefficients of the cos(2ωt) terms we obtain

K2
[
(χn − χn−1) + (χn − χn+1)

]
+

AK3

2

[
4(φn − φn−1)(χn − χn−1) + (ξn − ξn−1)

2
]

−AK3

2

[
4(φn − φn+1)(χn − χn+1) + (ξn − ξn+1)

2
]

+
3

4
A2K4

[
(χn − χn−1)

3

+(χn − χn+1)
3 + 4(φn − φn−1)

2(χn − χn−1) + 2(φn − φn−1)(ξn − ξn−1)
2

+2(χn − χn−1)(ξn − ξn−1)
2 + 4(φn − φn+1)

2(χn − χn+1)

+2(φn − φn+1)(ξn − ξn+1)
2 + 2(χn − χn+1)(ξn − ξn+1)

2
] = mn(2ω)2χn (6)

and of the constant term

K2
[
(φn − φn−1) + (φn − φn+1)

]
+

AK3

2

[
2(φn − φn−1)

2 + (χn − χn−1)
2 + (ξn − ξn−1)

2
]

−AK3

2

[
2(φn − φn+1)

2 + (χn − χn+1)
2 + (ξn − ξn+1)

2
]

+A2K4
[
(φn − φn−1)

3 + (φn − φn+1)
3
]

+ 3
4A2K4

[
2(φn − φn−1)(χn − χn−1)

2 + 2(φn − φn−1)(ξn − ξn−1)
2

+2(φn − φn+1)(χn − χn+1)
2 + 2(φn − φn+1)(ξn − ξn+1)

2

+(χn − χn−1)(ξn − ξn−1)
2 + (χn − χn+1)(ξn − ξn+1)

2
] = 0. (7)
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Figure 1. Frequency of bulk gap localized modes versus amplitude A for even modes � and odd
modes �.

Equations (5)–(7) are very useful to study the symmetries of the various amplitudes. By
considering these equations for the central atom n = 0 one sees that the ξ−1 and ξ1

displacements can have an even or odd symmetry, while the static displacements φ−1 and
φ1 and the displacements χ−1 and χ1 can have only even parity. The static displacements give
rise to an expansion of the crystal. To solve the system of coupled equations of motion (5)–(7)
we use a technique based on a standard routine of the Newton scaled gradient method. We start
with three atoms and an initial guess of the displacements. One atom is then added to each end
of the chain. The iterative procedure is continued up to 200 atoms. The addition of a couple
of atoms acts as a perturbation on the chain. If in the iterative procedure this perturbation does
not alter the mode, we consider the mode to be a stable solution.

3. Localized modes in the gap

We start by considering the chain formed by −100 < n < 100 atoms, with a light atom
at the origin n = 0. The initial guess for the displacements is ξ0 = 1, ξ−1 = ξ1 (odd
modes) and φ0 = φ−1 = φ1 = 0. In our analysis of the RWA we showed that this initial
guess gives odd ILM modes coming from the bottom of the optical branch. The initial
conditions for the χn are χ0 = 0, χ−1 = −χ1. If one chooses χ−1 = χ1 stable modes are not
obtained, even for small values of the amplitude A in agreement with out previous discussion of
equation (6). In figure 1 we present the results for the frequencies of the gap modes obtained by
solving equations (5)–(7). We consider maximum displacements up to 0.25 Å. As previously
mentioned, we have proved in a recent paper [15] that the full potential containing a Born–
Mayer repulsive term and an attractive Coulombic part gives ILMs which are qualitatively the
same as those derived from a force constant model which includes harmonic as well as cubic
and quartic anharmonic interactions derived by a Taylor expansion of the full potential in the
range of amplitudes up to 0.25 Å. The pattern of the static and first harmonic displacements
are shown in figure 2. The second harmonic displacements are presented in figure 3. These
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Figure 2. First harmonic displacements Aξn of the odd localized mode for amplitude A = 0.20.
Only the central part of the chain is shown. The static displacements Aφn are shown as ♦. Open
diamonds indicate the light atoms, full diamonds indicate the heavy atoms.
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Figure 3. Second harmonic displacements Aχn of the odd localized mode for amplitude A = 0.20.
Only the central part of the chain is shown.

contributions have even parity like the static displacements and their maximum amplitude is
two order of magnitude less than those associated with the first harmonic. This indicates that
the RWA is adequate to describe ILM modes. In figure 4 we present for the odd case the
behaviour of the second harmonic displacement of site n = −1, i.e. χ−1, as a function of the
maximum amplitude A of the mode. One sees that in the range of amplitudes considered here
the |χ−1| is always much less than the first harmonic amplitude. We now consider the chain
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Figure 4. Second harmonic displacement Aχ−1 of the odd localized mode versus the maximum
amplitude A of the mode.
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Figure 5. First harmonic displacements Aξn of the even localized mode for amplitude A = 0.20.
Only the central part of the chain is shown. The static displacements Aφn are shown as ♦. Open
diamonds indicate the light atoms, full diamonds indicate the heavy atoms.

with a heavy atom at the centre n = 0. In this case we obtain solutions with even symmetry for
the ξn displacements and odd symmetry for the φn and χn displacements. The frequencies of
these modes differ by less than 1% compared to those with the light central atom and therefore
are not presented. The displacement patterns for the ξn even displacements and for the static
φn odd displacements are shown in figure 5. The static displacements produce an expansion of
the chain. The displacement patterns of the χn contributions are presented in figure 6. We note
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Figure 6. Second harmonic displacements Aχn of the even localized mode for amplitude A = 0.20.
Only the central part of the chain is shown.
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Figure 7. Second harmonic displacement Aχ−1 of the even localized mode versus the maximum
amplitude A of the mode.

that even in this case of a heavy atom at the centre the displacements associated with the second
harmonic are two orders of magnitude less than those of the ξn contributions. The behaviour
of the second harmonic displacement χ−1 as a function of the maximum mode amplitude A is
given in figure 7.
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4. Conclusions

We have studied anharmonic localized modes present in a finite diatomic chain by going beyond
the RWA. We have included in the calculations second harmonic terms. The calculations are
performed for amplitudes no larger than 0.25 Å which is in the range of amplitudes that can
be detected experimentally without damaging the crystal. For these amplitudes it is possible
to make a power series expansion of the potential retaining force constants up to fourth order.
The displacements related to the first harmonic have either even or odd symmetry according
to whether the central atom of the chain is a light or a heavy atom.

We have shown that the displacements associated with the second harmonic terms have
even symmetry. The maximum amplitude of these displacements is two orders of magnitude
less than those of the first harmonic contributions. These results are consistent with the
intensities of the first and second harmonic present in the power spectrum evaluated with MD
simulations [4]. In conclusion we have shown that the inclusion of the second harmonic terms
in the equations of motion does not alter significantly the results obtained with the rotating
wave in the range of amplitudes we have considered.
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